Image for post
Image for post

Junk Food for Wild Salmon

What about seeding the oceans with iron in the deficient parts — the places that are deficient in iron and they have a lot of the other nutrients — a little bit of iron, we get a phytoplankton bloom, it pulls out huge amounts of CO2, it stimulates marine growth, all the way up the food chain?

You know, most of the oceans are vast deserts. There is an idea of using buoyant flakes. If you google climate envisionation, William Clarke, he’s an Australian inventor, buoyant flakes. You have something like rice husks, something that floats, and you lace it with nutrients that are deficient in the ocean and these things just float around. They will float for about a year and then they will die and sink. They are releasing nutrients wherever they go and they can stimulate phytoplankton growth. Something like that can absorb enormous amounts of CO2 from the atmosphere. Something like that has a lot more realism than the IPCC favorite horse, which is bioenergy with carbon capture and storage — BECCS — we just don’t have enough land for that. And that is part of the RCP (Representative Concentration Pathway) 2.6 of the IPCC report, which can only be reached if we remove CO2 from the atmosphere.

  • Plants rely on both light and carbon dioxide to grow. If shining more light results in faster-growing, less nutritious algae — junk-food algae whose ratio of sugar to nutrients is out of whack — then it seems logical to assume that ramping up carbon dioxide might do the same. This could already be playing out in plants all over the planet. What might that mean for the plants that people eat?
  • As best scientists can tell, this is what happens: Rising CO2 revs up photosynthesis, the process that helps plants transform sunlight to food. This makes plants grow, but it also leads them to pack in more carbohydrates like glucose at the expense of other nutrients that we depend on, like protein, iron and zinc.
  • Within the category of plants known as “C3”―which includes approximately 95 percent of plant species on earth, including ones we eat like wheat, rice, barley and potatoes―elevated CO2 has been shown to drive down important minerals like calcium, potassium, zinc and iron. The data we have, which look at how plants would respond to the kind of CO2 concentrations we may see in our lifetimes, show these important minerals drop by 8 percent, on average. The same conditions have been shown to drive down the protein content of C3 crops, in some cases significantly, with wheat and rice dropping 6 percent and 8 percent, respectively.

Written by

Emergency Planetary Technician and Climate Science Wonk — using naturopathic remedies to recover the Holocene without geoengineering or ponzinomics.

Get the Medium app

A button that says 'Download on the App Store', and if clicked it will lead you to the iOS App store
A button that says 'Get it on, Google Play', and if clicked it will lead you to the Google Play store